
NOTE OF ELEMENTARY ANALYSIS II

CHI-WAI LEUNG

1. Riemann Integrals

Notation 1.1. .

(i) : All functions f, g, h... are bounded real valued functions defined on [a, b]. And m ≤ f ≤M .
(ii) : P : a = x0 < x1 < .... < xn = b denotes a partition on [a, b]; ∆xi = xi − xi−1 and
‖P‖ = max ∆xi.

(iii) : Mi(f,P) := sup{f(x) : x ∈ [xi−1, xi}; mi(f,P) := inf{f(x) : x ∈ [xi−1, xi}. And
ωi(f,P) = Mi(f,P)−mi(f,P).

(iv) : U(f,P) :=
∑
Mi(f,P)∆xi; L(f,P) :=

∑
mi(f,P)∆xi.

(v) : R(f,P, {ξi}) :=
∑
f(ξi)∆xi, where ξi ∈ [xi−1, xi].

(vi) : R[a, b] is the class of all Riemann integral functions on [a, b].

Definition 1.2. We say that the Riemann sum R(f,P, {ξi}) converges to a number A as ‖P‖ → 0
if for any ε > 0, there is δ > 0 such that

|A− R(f,P, {ξi})| < ε

for any ξi ∈ [xi−1, xi] whenever ‖P‖ < δ.

Theorem 1.3. f ∈ R[a, b] if and only if for any ε > 0, there is a partition P such that U(f,P)−
L(f,P) < ε.

Lemma 1.4. f ∈ R[a, b] if and only if for any ε > 0, there is δ > 0 such that U(f,P)−L(f,P) < ε
whenever ‖P‖ < δ.

Proof. The converse follows from Theorem 1.3.
Assume that f is integrable over [a, b]. Let ε > 0. Then there is a partition Q : a = y0 < ... < yl = b
on [a, b] such that U(f,Q) − L(f,Q) < ε. Now take 0 < δ < ε/l. Suppose that P : a = x0 < ... <
xn = b with ‖P‖ < δ. Then we have

U(f,P)− L(f,P) = I + II

where
I =

∑
i:Q∩(xi−1,xi)=∅

ωi(f,P)∆xi;

and
II =

∑
i:Q∩(xi−1,xi)6=∅

ωi(f,P)∆xi

Notice that we have
I ≤ U(f,Q)− L(f,Q) < ε

and
II ≤ (M −m)

∑
i:Q∩(xi−1,xi) 6=∅

∆xi ≤ (M −m) · l · ε
l

= (M −m)ε.

The proof is finished. �
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Theorem 1.5. f ∈ R[a, b] if and only if the Riemann sum R(f,P, {ξi}) is convergent. In this case,

R(f,P, {ξi}) converges to

∫ b

a
f(x)dx as ‖P‖ → 0.

Proof. For the proof (⇒) : we first note that we always have

L(f,P) ≤ R(f,P, {ξi}) ≤ U(f,P)

and

L(f,P) ≤
∫ b

a
f(x)dx ≤ U(f,P)

for any ξi ∈ [xi−1, xi] and for all partition P.
Now let ε > 0. Lemma 1.4 gives δ > 0 such that U(f,P) − L(f,P) < ε as ‖P‖ < δ. Then we

have

|
∫ b

a
f(x)dx− R(f,P, {ξi})| < ε

as ‖P‖ < δ. The necessary part is proved and R(f,P, {ξi}) converges to

∫ b

a
f(x)dx.

For (⇐) : there exists a number A such that for any ε > 0, there is δ > 0, we have

A− ε < R(f,P, {ξi}) < A+ ε

for any partition P with ‖P‖ < δ and ξi ∈ [xi−1, xi].
Now fix a partition P with ‖P‖ < δ. Then for each [xi−1, xi], choose ξi ∈ [xi−1, xi] such that
Mi(f,P)− ε ≤ f(ξi). This implies that we have

U(f,P)− ε(b− a) ≤ R(f,P, {ξi}) < A+ ε.

So we have shown that for any ε > 0, there is a partition P such that

(1.1)

∫ b

a
f(x)dx ≤ U(f,P) ≤ A+ ε(1 + b− a).

By considering −f , note that the Riemann sum of −f will converge to −A. The inequality 1.1 will
imply that for any ε > 0, there is a partition P such that

A− ε(1 + b− a) ≤
∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx ≤ A+ ε(1 + b− a).

The proof is finished. �

Theorem 1.6. Let f ∈ R[c, d] and let φ : [a, b] −→ [c, d] be a strictly increasing C1 function with
f(a) = c and f(b) = d.
Then f ◦ φ ∈ R[a, b], moreover, we have∫ d

c
f(x)dx =

∫ b

a
f(φ(t))φ′(t)dt.

Proof. Let A =
∫ d
c f(x)dx. By Theorem 1.5, we need to show that for all ε > 0, there is δ > 0 such

that
|A−

∑
f(φ(ξk))φ

′(ξk)4tk| < ε

for all ξk ∈ [tk−1, tk] whenever Q : a = t0 < ... < tm = b with ‖Q‖ < δ.
Now let ε > 0. Then by Lemma 1.4 and Theorem 1.5, there is δ1 > 0 such that

(1.2) |A−
∑

f(ηk)4xk| < ε

and

(1.3)
∑

ωk(f,P)4xk < ε



3

for all ηk ∈ [xk−1, xk] whenever P : c = x0 < ... < xm = d with ‖P‖ < δ1.
Now put x = φ(t) for t ∈ [a, b].
Now since φ and φ′ are continuous on [a, b], there is δ > 0 such that |φ(t) − φ(t′)| < δ1 and
|φ′(t)− φ′(t′)| < ε for all t, t′ in[a, b] with |t− t′| < δ.
Now let Q : a = t0 < ... < tm = b with ‖Q‖ < δ. If we put xk = φ(tk), then P : c = x0 < .... < xm =
d is a partition on [c, d] with ‖P‖ < δ1 because φ is strictly increasing.
Note that the Mean Value Theorem implies that for each [tk−1, tk], there is ξ∗k ∈ (tk−1, tk) such that

4xk = φ(tk)− φ(tk−1) = φ′(ξ∗k)4tk.

This yields that

(1.4) |4xk − φ′(ξk)4tk| < ε4tk

for any ξk ∈ [tk−1, tk] for all k = 1, ...,m because of the choice of δ.
Now for any ξk ∈ [tk−1, tk], we have

(1.5)

|A−
∑

f(φ(ξk))φ
′(ξk)4tk| ≤ |A−

∑
f(φ(ξ∗k))φ′(ξ∗k)4tk|

+ |
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk −
∑

f(φ(ξ∗k))φ′(ξk)4tk|

+ |
∑

f(φ(ξ∗k))φ′(ξk)4tk −
∑

f(φ(ξk))φ
′(ξk)4tk|

Notice that inequality 1.2 implies that

|A−
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk| = |A−
∑

f(φ(ξ∗k))4xk| < ε.

Also, since we have |φ′(ξ∗k)− φ′(ξk)| < ε for all k = 1, ..,m, we have

|
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk −
∑

f(φ(ξ∗k))φ′(ξk)4tk| ≤M(b− a)ε

where |f(x)| ≤M for all x ∈ [c, d].
On the other hand, by using inequality 1.4 we have

|φ′(ξk)4tk| ≤ 4xk + ε4tk

for all k. This, together with inequality 1.3 imply that

|
∑

f(φ(ξ∗k))φ′(ξk)4tk −
∑

f(φ(ξk))φ
′(ξk)4tk|

≤
∑

ωk(f,P)|φ′(ξk)4tk| (∵ φ(ξ∗k), φ(ξk) ∈ [xk−1, xk])

≤
∑

ωk(f,P)(4xk + ε4tk)
≤ ε+ 2M(b− a)ε.

Finally by inequality 1.5, we have

|A−
∑

f(φ(ξk))φ
′(ξk)4tk| ≤ ε+M(b− a)ε+ ε+ 2M(b− a)ε.

The proof is finished. �

Example 1.7. Define ( formally) an improper integral Γ(s) ( called the Γ-function) as follows:

Γ(s) :=

∫ ∞
0

xs−1e−xdx

for s ∈ R. Then Γ(s) is convergent if and only if s > 0.
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Proof. Put I(s) :=
∫ 1
0 x

s−1e−xdx and II(s) :=
∫∞
1 xs−1e−xdx. We first claim that the integral

II(s) is convergent for all s ∈ R.
In fact, if we fix s ∈ R, then we have

lim
x→∞

xs−1

ex/2
= 0.

So there is M > 1 such that xs−1

ex/2
≤ 1 for all x ≥M . Thus we have

0 ≤
∫ ∞
M

xs−1e−xdx ≤
∫ ∞
M

e−x/2dx <∞.

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < η < 1, we have

0 ≤
∫ 1

η
xs−1e−xdx ≤

∫ 1

η
xs−1dx =

{
1
s (1− ηs) if s− 1 6= −1;

− ln η otherwise .

Thus the integral I(s) = lim
η→0+

∫ 1

η
xs−1e−xdx is convergent if s > 0.

Conversely, we also have∫ 1

η
xs−1e−xdx ≥ e−1

∫ 1

η
xs−1dx =

{
e−1

s (1− ηs) if s− 1 6= −1;

−e−1 ln η otherwise .

So if s ≤ 0, then
∫ 1
η x

s−1e−xdx is divergent as η → 0+. The result follows. �

2. Uniform Convergence of a Sequence of Differentiable Functions

Proposition 2.1. Let fn : (a, b) −→ R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(x) point-wise converges to a function f(x) on (a, b);
(ii) : each fn is a C1 function on (a, b);

(iii) : f ′n → g uniformly on (a, b).

Then f is a C1-function on (a, b) with f ′ = g.

Proof. Fix c ∈ (a, b). Then for each x with c < x < b (similarly, we can prove it in the same way
as a < x < c), the Fundamental Theorem of Calculus implies that

fn(x) =

∫ x

c
f ′(t)dt.

Since f ′n → g uniformly on (a, b), we see that∫ x

c
f ′n(t)dt −→

∫ x

c
g(t)dt.

This gives

(2.1) f(x) =

∫ x

c
g(t)dt.

for all x ∈ (c, b). On the other hand, g is continuous on (a, b) since each f ′n is continuous and
f ′n → g uniformly on (a, b). Equation 2.1 will tell us that f ′ exists and f ′ = g on (c, b). The proof
is finished. �

Proposition 2.2. Let (fn) be a sequence of differentiable functions defined on (a, b). Assume that

(i): there is a point c ∈ (a, b) such that lim fn(c) exists;
(ii): f ′n converges uniformly to a function g on (a, b).
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Then

(a): fn converges uniformly to a function f on (a, b);
(b): f is differentiable on (a, b) and f ′ = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let ε > 0. Then by the assumptions (i) and (ii), there is a positive integer N such that

|fm(c)− fn(c)| < ε and |f ′m(x)− f ′n(x)| < ε

for all m,n ≥ N and for all x ∈ (a, b). Now fix c < x < b and m,n ≥ N . To apply the Mean Value
Theorem for fm − fn on (c, x), then there is a point ξ between c and x such that

(2.2) fm(x)− fn(x) = fm(c)− fn(c) + (f ′m(ξ)− f ′n(ξ))(x− c).
This implies that

|fm(x)− fn(x)| ≤ |fm(c)− fn(c)|+ |f ′m(ξ)− f ′n(ξ)||x− c| < ε+ (b− a)ε

for all m,n ≥ N and for all x ∈ (c, b). Similarly, when x ∈ (a, c), we also have

|fm(x)− fn(x)| < ε+ (b− a)ε.

So Part (a) follows.
Let f be the uniform limit of (fn) on (a, b)
For Part (b), we fix u ∈ (a, b). We are going to show

lim
x→u

f(x)− f(u)

x− u
= g(u).

Let ε > 0. Since fn → f and f ′ → g both are uniformly convergent on (a, b). Then there is N ∈ N
such that

(2.3) |fm(x)− fn(x)| < ε and |f ′m(x)− f ′n(x)| < ε

for all m,n ≥ N and for all x ∈ (a, b)
Note that for all m ≥ N and x ∈ (a, b) \ {u}, applying the Mean value Theorem for fm − fN as
before, we have

fm(x)− fN (x)

x− u
=
fm(u)− fN (u)

x− u
+ (f ′m(ξ)− f ′N (ξ))

for some ξ between u and x.
So Eq.2.3 implies that

(2.4) |fm(x)− fm(u)

x− u
− fN (x)− fN (u)

x− u
| ≤ ε

for all m ≥ N and for all x ∈ (a, b) with x 6= u.
Taking m→∞ in Eq.2.4, we have

|f(x)− f(u)

x− u
− fN (x)− fN (u)

x− u
| ≤ ε.

Hence we have

|f(x)− f(u)

x− u
− f ′N (u)| ≤ |f(x)− f(u)

x− c
− fN (x)− fN (u)

x− u
|+ |fN (x)− fN (u)

x− u
− f ′N (u)|

≤ ε+ |fN (x)− fN (u)

x− u
− f ′N (u)|.

So if we can take 0 < δ such that |fN (x)−fN (u)
x−u − f ′N (u)| < ε for 0 < |x− u| < δ, then we have

(2.5) |f(x)− f(u)

x− u
− f ′N (u)| ≤ 2ε
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for 0 < |x − u| < δ. On the other hand, by the choice of N , we have |f ′m(y) − f ′N (y)| < ε for all
y ∈ (a, b) and m ≥ N . So we have |g(u)− f ′N (u)| ≤ ε. This together with Eq.2.5 give

|f(x)− f(u)

x− u
− g(u)| ≤ 3ε

as 0 < |x− u| < δ, that is we have

lim
x→u

f(x)− f(u)

x− u
= g(u).

The proof is finished. �

Remark 2.3. The uniform convergence assumption of (f ′n) in Propositions 2.1 and 2.2 is essential.

Example 2.4. Let fn(x) := tan−1 nx for x ∈ (−1, 1). Then we have

f(x) := lim
n

tan−1 nx =


π/2 if x > 0;

0 if x = 0;

−π/2 if x < 0.

Also g(x) := limn f
′
n(x) = limn 1/(1 + n2x2) = 0 for all x ∈ (−1, 1). So Propositions 2.1 and 2.2

does not hold. Note that (f ′n) does not converge uniformly to g on (−1, 1).

3. Absolutely convergent series

Throughout this section, let (an) be a sequence of complex numbers.

Definition 3.1. We say that a series
∞∑
n=1

an is absolutely convergent if
∞∑
n=1

|an| <∞.

Also a convergent series

∞∑
n=1

an is said to be conditionally convergent if it is not absolute convergent.

Example 3.2. Important Example : The series

∞∑
n=1

(−1)n+1

nα
is conditionally convergent when

0 < α ≤ 1.
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.
For instance, if we consider the function f : [1,∞) −→ R given by

f(x) =
(−1)n+1

nα
if n ≤ x < n+ 1.

If α = 1/2, then

∫ ∞
1

f(x)dx is convergent but it is neither absolutely convergent nor square inte-

grable.

Notation 3.3. Let σ : {1, 2...} −→ {1, 2....} be a bijection. A formal series

∞∑
n=1

aσ(n) is called an

rearrangement of
∞∑
n=1

an.
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Example 3.4. In this example, we are going to show that there is an rearrangement of the series
∞∑
i=1

(−1)i+1

i
is divergent although the original series is convergent. In fact, it is conditionally

convergent.
We first notice that the series

∑
i

1
2i−1 diverges to infinity. Thus for each M > 0, there is a positive

integer N such that
n∑
i=1

1

2i− 1
≥M · · · · · · · · · (∗)

for all n ≥ N . Then there is N1 ∈ N such that

N1∑
i=1

1

2i− 1
− 1

2
> 1.

By using (∗) again, there is a positive integer N2 with N1 < N2 such that

N1∑
i=1

1

2i− 1
− 1

2
+

∑
N1<i≤N2

1

2i− 1
− 1

4
> 2.

To repeat the same procedure, we can find a positive integers subsequence (Nk) such that

N1∑
i=1

1

2i− 1
− 1

2
+

∑
N1+1<i≤N2

1

2i− 1
− 1

4
+ · · · · · · · · · −

∑
Nk−1+1<i≤Nk

1

2i− 1
− 1

2k
> k

for all positive integers k. So if we let an = (−1)n+1

n and put

σ(i) =

{
2i− 1 if 1 ≤ i ≤ N1 or Nk−1 + 1 < i ≤ Nk for k > 1;

2k if i = Nk + 1 for k ≥ 1.

then the series
∞∑
i=1

aσ(i) diverges to infinity and is an rearrangement of the series
∞∑
i=1

(−1)i+1

i
. The

proof is finished.

Theorem 3.5. Let

∞∑
n=1

an be an absolutely convergent series. Then for any rearrangement

∞∑
n=1

aσ(n)

is also absolutely convergent. Moreover, we have
∞∑
n=1

an =
∞∑
n=1

aσ(n).

Proof. Let σ : {1, 2...} −→ {1, 2...} be a bijection as before.
We first claim that

∑
n aσ(n) is also absolutely convergent.

Let ε > 0. Since
∑

n |an| <∞, there is a positive integer N such that

|aN+1|+ · · · · · · · · ·+ |aN+p| < ε · · · · · · · · · (∗)

for all p = 1, 2.... Notice that since σ is a bijection, we can find a positive integer M such that
M > max{j : 1 ≤ σ(j) ≤ N}. Then σ(i) ≥ N if i ≥M . This together with (∗) imply that if i ≥M
and p ∈ N, we have

|aσ(i+1)|+ · · · · · · · · · |aσ(i+p)| < ε.

Thus the series
∑

n aσ(n) is absolutely convergent by the Cauchy criteria.
Finally we claim that

∑
n an =

∑
n aσ(n). Put l =

∑
n an and l′ =

∑
n aσ(n). Now let ε > 0. Then
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there is N ∈ N such that

|l −
N∑
n=1

an| < ε and |aN+1|+ · · · · · ·+ |aN+p| < ε · · · · · · · · · (∗∗)

for all p ∈ N. Now choose a positive integer M large enough so that {1, ..., N} ⊆ {σ(1), ..., σ(M)}

and |l′ −
M∑
i=1

aσ(i)| < ε. Notice that since we have {1, ..., N} ⊆ {σ(1), ..., σ(M)}, the condition (∗∗)

gives

|
N∑
n=1

an −
M∑
i=1

aσ(i)| ≤
∑

N<i<∞
|ai| ≤ ε.

We can now conclude that

|l − l′| ≤ |l −
N∑
n=1

an|+ |
N∑
n=1

an −
M∑
i=1

aσ(i)|+ |
M∑
i=1

aσ(i) − l′| ≤ 3ε.

The proof is complete. �
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